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Abstract. We simulate the continuum percolation of discs in two dimensions and calculate 
estimates for the threshold parameter and some critical exponents. We use a cluster growth 
method which relies on our recent discovery that the continuum percolation of discs can 
be formulated as a bond percolation problem on a planar triangulated random lattice. The 
algorithm is very efficient. 

1. Introduction 

In a recent letter [ l ]  we showed that the continuum percolation of discs in two 
dimensions is equivalent to a bond percolation problem on a random lattice. This 
raised the possibility of doing computer simulations of continuum percolation using 
techniques which have been developed for lattice structures. In particular, since nearest 
neighbours are well defined on the random lattice, we could use cluster growth methods. 
In this paper we develop an algorithm for growing continuum percolation clusters at 
threshold using the technique of invasion percolation on random lattices [2]. We 
report the results of our computations of the threshold parameter and critical exponents 
obtained using this new algorithm. 

2. The continuum percolation of discs and the random lattice 

The random lattice which we will be discussing in this paper is of the type described 
by us in [3]. The sites of the lattice are points distributed randomly in the plane and 
correspond to the centres of the discs in the continuum percolation problem. The sites 
are linked up to form triangles according to the criterion that the circumcircle of any 
three sites forming a triangle in the lattice has no other site inside it. It is known that 
this can be done in such a way that the triangles fill the plane with no overlap. The 
dual of the random lattice is a lattice consisting of Voronoi polygons. The geometrical 
properties of these random lattices have been thoroughly researched. 

The problem of the continuum percolation of discs involves placing discs of equal 
radius at random in the plane. If two discs overlap they are said to be in the same 
cluster and the problem is to study the distribution of these clusters and to find the 
critical density at which an infinite cluster is formed through the system. We showed 
in [ l ]  that this is equivalent to the bond problem on a random lattice in which all 
bonds with length less than or equal to the diameter of the discs are coloured red and 
two sites are defined to be in the same cluster if they are linked either by a red bond 

0305-4470/87/ 176053 + 05$02.50 @ 1987 IOP Publishing Ltd 6053 



6054 J F McCarth-v 

or by a connected path of red bonds. Hence it is possible to study the continuum 
percolation of discs by doing simulations on an ensemble on random lattices. 

3. Invasion percolation on random lattices 

In our recent paper [ 2 ]  we discussed the simulation of percolation of random lattices. 
We decided that cluster growth methods (see, for example, [4, 51) were probably the 
best to use since they are not very dependent on lattice structure. Actually, we used 
the technique of invasion percolation to compute the critical points and critical 
exponents of uncorrelated site and bond percolation on random lattices. We refer you 
to that paper [ 2 ]  for details of the method. 

Briefly, invasion percolation clusters for uncorrelated bond percolation can be 
grown by the following algorithm. 

(1) Choose a bond to be the seed of the cluster. 
(2)  Assign random numbers between 0 and 1 to the nearest-neighbour bonds of 

the seed. These bonds form the boundary of the cluster to start with. 
(3) Find the bond on the boundary which has the smallest random number, r, 

assigned to it. 
(4) Accept that bond into the cluster and  assign random numbers to any of its 

nearest neighbours which are empty, thereby adding them onto the boundary of the 
cluster. 

(5) Go to step (3). 
It is clear that the invasion percolation clusters are never constrained to terminate 

and can be grown to any size. It is not so clear, but nevertheless seems to be the case, 
that these clusters bear an  interesting relationship to the clusters of ordinary percolation 
at threshold which allows invasion percolation to be used to study the critical behaviour 
of the ordinary percolation model. Although most of the rigorous evidence for this 
relationship is based on analyses of uncorrelated site percolation on a two-dimensional 
square lattice [ 6 ]  we assume in this paper that it holds equally well for a random lattice 
and  for the bond problem discussed earlier which is different from an  uncorrelated 
bond problem. Certainly the results which we obtain seem to validate the use of the 
invasion percolation technique. Invasion percolation is used to compute an  estimate 
for the critical density, xc, the fractal dimension, 0, of critical clusters and  the gap  
exponent, A = p + y, of ordinary percolation at threshold. 

4. Growing continuum percolation clusters at threshold 

When we performed our  simulation of uncorrelated bond percolation we used a periodic 
two-dimensional random lattice of 10 000 sites and, starting at a bond near the centre, 
grew invasion percolation clusters out into repetitions of the basic lattice. Different 
clusters were the result of different assignments of random numbers to the lattice. 

The bond problem which we wish to discuss in this paper is slightly different from 
the uncorrelated bond problem. If you refer back to the algorithm which we gave for 
growing invasion percolation clusters in the uncorrelated bond problem, then the 
algorithm for the bond problem of interest would be obtained by replacing steps (2)-(5) 
by the steps ( 2 ' ) - ( 5 ' )  given below. 

( 2 ' )  Calculate the lengths of the nearest-neighbour bonds of the seed. These bonds 
form the boundary of the cluster to start with. 
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(3’) Find the bond on the boundary which has the smallest length. 
(4’) Accept that bond into the cluster and calculate the lengths of any of its 

neighbours which are not already on the boundary, thereby adding them onto the 
boundary of the cluster. 

( 5 ’ )  Go to step (3‘). 
The clusters grown using this algorithm depend only on the geometry of the random 

lattice-there is no independent probability distribution imposed on the bonds. Hence 
the results are obtained by averaging over an ensemble of random lattices. To grow, 
say, 1000 clusters by the methods used in [2] it would be necessary to make 1000 
random lattices with different realisations of the random sites. This would be quite 
time consuming and the size of the clusters grown would be limited by the size of the 
lattices. 

Fortunately we have been able to get around this problem by finding an algorithm 
in which the bonds of the random lattice and the invasion percolation cluster are 
constructed in a very similar manner, starting at a central point and spiralling outwards, 
so that the two processes can be superimposed. To understand this it is necessary to 
consider how to construct a random lattice in two dimensions. 

The problem is, given a set of N points distributed at random in a square 0, to 
link them up into a lattice of triangles according to the prescription that the circumcircle 
of any three points forming a triangle in the lattice has no other point inside it. A 
simple sequential algorithm which we devised for doing this is given below. 

Choose a central point and join it to its nearest neighbour. These points can be 
labelled 1 and 2 respectively and form the first link of the lattice. Find the closest 
point to link 12 by finding the point to which the largest angle is subtended. Label 
this point 3. Form links 13 and 23. Now consider the link 13. It divides the plane 
into two parts. On one side we have already formed a triangle, i.e. A123. We must 
now form the triangle on the other side by finding the closest point to link 13 on that 
side. This will be point 4. Now consider link 14 and find its triangle point on the side 
which does not contain point 3. Circle around point 1 in this way until the new triangle 
point for link In takes us back to point 2. Then we have completely enclosed point 
1 with triangles. 

Now we will complete the circle of triangles around point 2. To do this we first 
take link 2n which was the last link formed. We know that it is contained in A12n. 
Find the triangle point on the other side and label it n + 1. Consider link 2( n + 1) and 
keep circling around point 2 until we get back to point 3. Then circle around point 
3, returning to point 4, etc. The process ends when the Nth point has been circled 
around. 

We have defined a process in which one triangle of the lattice is formed near the 
centre and is built upon in a spiralling manner to encompass all the points of the 
lattice. This algorithm can be combined with the algorithm for growing invasion 
percolation clusters. A very useful extra ingredient is the method of overlaying an 
‘imaginary covering mesh’ onto the area 0, each mesh cell being square and of unit 
area. We quote the method from [7]. 

‘For each cell select a random number 5 between 0 and 1. Determine an integer 
D by requiring 

where P ( x ,  k )  =e-”,yk/k! in the Poisson distribution. Then place D points in the 
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current cell, with their positions within the cell chosen randomly. Note that the statistics 
of the spatial distribution of discs thus obtained are identical to the statistics of a 
distribution of discs whose positions are chosen to be anywhere in the area R, and  
hence the imaginary covering mesh does not distort the continuum nature of the 
simulation.’ 

With this extra ingredient it is possible to grow continuum percolation clusters at  
threshold from ‘next to nothing’. 

Start with the central nine cells of the imaginary covering mesh and  fill them with 
random points according to the method outlined above (the average number of points 
in any cell is an  adjustable parameter and we found that a sufficient number was 15). 
Choose a point in the central cell and circle around it to find its nearest-neighbour 
bonds in the random lattice. These bonds form the boundary of the invasion percolation 
cluster to start with. Find the bond with the smallest length and accept its free endpoint 
into the cluster (it may happen at some stage that both endpoints of the bond have 
already been accepted into the cluster in which case the next step can be skipped). 
Determine which cell the new cluster site is in. Call it the current cell. If necessary, 
make some more cells of the imaginary covering mesh so that the current cell is 
completely surrounded. Circle around the new cluster site in the current cell finding 
any of its nearest neighbours which are not already on the boundary, thereby adding 
them onto the boundary of the cluster. Continue the process. 

Using this algorithm it is possible to grow critical continuum percolation clusters 
of any size. The algorithm is efficient both in speed and  in storage because the random 
lattice and the cluster are constructed at the same time and  because only as much of 
the random lattice is constructed as is required. 

5. Discussion of results 

We grew 1200 clusters of size 10 000 sites. All computations were done on the ICL DAP 
at Queen Mary College, London. The time required to grow one cluster was 525 DAP 
seconds. (No doubt the DAP was a poor choice of machine to use for this problem 
since the algorithm is essentially sequential and the DAP is quite slow in computing 
sequential steps, gaining efficiency only if the algorithm is arranged so that many 
elements are processed in parallel. However, it was a convenient machine to use for 
other reasons.) 

Our results are presented in table 1. The normalised threshold parameter, xC, which 
we compute, is the number of points per unit area (as in [7]). The lower end of the 
range of n which we used in calculating critical exponents was given by nmin = 3000 
(see [ 5 ] ) .  The errors quoted are one standard deviation statistical errors estimated by 
dividing the data into ten groups and observing the standard deviation between the 
ten sets of results. 

Table 1. Results of computer simulations of the continuum percolation of discs. 

0.720 I 0.004 0.378 * 0.028 0.529 * 0.014 Present work 
Gawlinski a n d  Stanley [ 7 ]  0.718i0.003 0.389 * 0.009 0.523 * 0.020 
Lattice values 0.3956 0.5275 
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In table 1 we compare our results with those obtained by Gawlinski and Stanley 
[7] and with the generally accepted values for the critical exponents on regular lattices. 
The agreement is excellent. 

In summary, we have devised an algorithm for growing continuum percolation 
clusters at threshold in two dimensions. We have used our new algorithm to compute 
estimates for the critical density and critical exponents of the continuum percolation 
of discs. The results obtained are competitive with those obtained using other methods 
and provide more evidence for the conjecture that the problems of continuum percola- 
tion and percolation on lattices have the same critical exponents. 

Note added. I would like to draw the reader's attention to the work of Kerstein [8 ,9]  on the dual problem 
of 'void' percolation in terms of Voronoi networks. 
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